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CHAPTER

1
Preview of Wavelets, Wavelet Filters,
and Wavelet Transforms

As mentioned in the Preface, wavelets are used extensively in many varied technical
fields. They are usually presented in mathematical formulae, but can actually be un-
derstood in terms of simple comparisons or correlations with the signal being ana-
lyzed.

In this chapter we introduce you to wavelets and to the wavelet filters that allow us to
actually use them in Digital Signal Processing (DSP). Before exploring wavelet trans-
forms as comparisons with wavelets, we first look at some simple everyday “transforms”
and show how they too are comparisons. We next show how the familiar discrete
Fourier transform (DFT) can also be thought of as comparisons with sinusoids. (In
practice we use the speedy fast Fourier transform (FFT) algorithm to implement DFTs.
To avoid confusion with the discrete wavelet transforms soon to be explored, we will
use the term fast Fourier transform or FFT to represent the discrete Fourier trans-
form.*)

Time signals that are simple waves of constant frequencies can be processed in a
straightforward manner with ordinary FFT methods. Real-world signals, however, of-
ten have frequency content that can change over time or have pulses, anomalies, or
other “events” at certain specific times. They can be intermittent, transient, or noisy.
This type of signal can tell us where something is located on the planet, the health of a
human heart, the position and velocity of a “blip” on a RADAR screen, stock market be-
havior, or the location of underground oil deposits. For these signals, we will usually
do better with wavelets.

Jargon Alert: Signals (or noise) that stay at a constant frequency are called
“stationary signals” in wavelet terminology. Signals that can change over time
are called “non-stationary”.

One final thought before beginning: Wavelets deal simultaneously with both time and
frequency and require some effort to master. However their powerful capabilities in
achieving this feat make them well worth the effort. This conceptual method makes

                                                
* MATLAB also uses the term “FFT” rather than “DFT” to compute the discrete Fourier transform.
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learning them possible without advanced math skills and gives you a gut-level com-
prehension in the bargain.

The goal of this preview chapter is to introduce you to some new concepts, show you
some basic diagrams, familiarize you with the jargon, and give you a preliminary feel
for what’s going on. Please don’t be discouraged if everything is not obvious at first
glance.

The next few short chapters will walk you step-by-step through the main concepts and
the later chapters should answer most of the remaining questions. You should then be
prepared to correctly and confidently use wavelets and to better understand the more
advanced math-based texts and papers after you have seen wavelets “in action”.

1.1 What is a Wavelet?

A wavelet is a waveform of limited duration that has an average value of
zero. Unlike sinusoids that theoretically extend from minus to plus infinity,
wavelets have a beginning and an end. Figure 1.1–1 shows a representation
of a continuous sinusoid and a so-called “continuous” wavelet (a Daubechies
20 wavelet is depicted here).

Sinusoids are smooth and predictable and are good at describing constant-
frequency (stationary) signals. Wavelets are irregular, of limited duration,
and often non-symmetrical. They are better at describing anomalies, pulses,
and other events that start and stop within the signal.

Cosine Wave Db20 Wavelet

Figure 1.1–1 A portion of an infinitely long sinusoid (a cosine wave is shown here) and a fi-
nite length wavelet. Notice the sinusoid has an easily discernible frequency while the wavelet
has a pseudo frequency in that the frequency varies slightly over the length of the wavelet.
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Figure 1.1–2 shows how wavelets can be stretched or “scaled” to the same
frequency as the anomaly, pulse, or other event. Notice that as the wavelet
is stretched it has a lower frequency. Wavelets can also be shifted in time to
line up with the event. Knowing how much the wavelet was stretched and
shifted to line up (correlate) with the event gives us information as to the
time and frequency of the event.

Jargon Alert: In DSP scaling usually means changing the amplitude
of a signal or waveform. In wavelet terminology, however, the term
scaling means stretching or shrinking the wavelet in time. Thus the
term scaling usually has reference to the frequency (or more pre-
cisely pseudo frequency) of the wavelet. The term dilation is also
used to describe either stretching or shrinking the wavelet in time
(despite the dictionary definition).*

Stretched or “scaled” sinusoid Stretched or “scaled” wavelet

Figure 1.1–2 The infinitely long sinusoid is stretched (or scaled in wavelet terminology) and is
now a lower frequency. The Db20 wavelet is also stretched (scaled) and its pseudo frequency
(average frequency) is also lower.

1.2 What is a Wavelet Filter and how is it dif-
ferent from a Wavelet?

Wavelets are a child of the digital age. Some wavelets are defined by a
mathematical expression and are drawn as continuous and infinite. These
are called crude wavelets. However to use them with our digital signal, they
must first be converted to wavelet filters having a finite number of discrete
points. In other words, we evaluate the crude wavelet equation at the desired
points in time (usually equispaced) to create the filter values at those times.

                                                
* By this definition “dilated pupils” can mean eyes constricted to pinhole openings. “When I use a word it
means just what I choose it to mean—neither more nor less.”—Humpty Dumpty in “Through the Looking
Glass” by Lewis Carroll.
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Jargon Alert: “Crude” wavelets are generated from an explicit
mathematical equation.

Figure 1.2–1 shows the whimsically-named Mexican Hat crude wavelet that
looks like the side view of a sombrero. The mathematical expression for this
particular wavelet as a function of time (t) is given by

mexh(t ) = 2 ( 3 −1 4 ){ }(1− t2 )e−t 2 2
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Figure 1.2–1 “Crude” Mexican Hat Wavelet with 17 points (a) then 33 wavelet filter points
superimposed on the continuous (crude) representation (a then b). Although the defining equa-
tion describes an infinite, continuous waveform, by using equispaced discrete points we have
created discrete, finite-length filters ready for use with digital computers.

Other wavelets start out as filters having as little as 2 points. Then an ap-
proximation or estimation of a continuous wavelet (for depictions) is built  by
interpolating and extrapolating more points. For these wavelets, there really
is no true continuous form, only an estimation built from the original filter
points. Figure 1.2–2 shows the 4 original filter points (plus 2 zeros at the
same spacing) of the Daubechies 4 (Db4) wavelet superimposed on a 768
point estimation of a “continuous wavelet” built from these points.*

                                                
* We will demonstrate later how we go from 6 points to 12, 24, etc. to 768. MATLAB uses 768 points as a
suitable approximation (estimation) of a “continuous” Db4 wavelet.

 a. 17 pts  b. 33 pts
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Figure 1.2–2 768 point estimation of a “continuous” Daubechies 4 wavelet built from 6
equispaced filter points (the 4 original filter points and 2 end zeros) superimposed on the graph.

Some wavelets have symmetry (valuable in human vision perception) such
as the Biorthogonal wavelet pairs. Shannon or “Sinc” wavelets can find
events with specific frequencies. (These are similar to the “sin(x)/x” sinc
function filters found in traditional DSP.) Haar wavelets (the shortest) are
good for edge detection and reconstructing binary pulses. Coiflets wavelets
are good for data with self-similarities (fractals) such as financial trends.
Some of the wavelet families are shown below in Figure 1.2–3.

You can even create your own wavelets, if needed. However there is “an
embarrassment of riches” in the many wavelets that are already out there
and ready to go. With their ability to stretch and shift, wavelets are ex-
tremely adaptable. You can usually get by very nicely with choosing a less-
than-perfect wavelet. The only “wrong” choice is to avoid wavelets entirely
due to an abundant selection.

As you can see (Fig. 1.2–3), wavelets come in various shapes and sizes. By
stretching and shifting (“dilating and translating“) the wavelet we can
“match” it to the hidden event and thus discover its frequency and location in
time. In addition, a particular wavelet shape may match the event unusually
well (when stretched and shifted appropriately). This then tells us also about
the shape of the event  (It probably looks like the wavelet to obtain such a
good match or correlation.) For example, the Haar wavelet would match an
abrupt discontinuity while the Db20 would match a chirp signal (see the first
and fourth wavelets in Fig. 1.2–3).
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Haar Shannon or Sinc Daubechies 4 Daubechies 20

Gaussian or Spline Mexican Hat CoifletBiorthogonal

Figure 1.2–3 Examples of types of wavelets. Note 2 wavelets for the Biorthogonal. The Shan-
non, Gaussian, and Mexican Hat are “crude” wavelets that are defined by an explicit mathe-
matical expression (and whose wavelet filters are obtained from evaluating that expression at
specific points in time). The rest are estimations of a “continuous” wavelet built up from the
original filter points.

Jargon Alert: Shifting or sliding is often referred to as “translating”
in wavelet terminology.

1.3 The value of Transforms and Examples of
Everyday Use

Perhaps the easiest way to understand wavelet transforms is to first look at
some transforms and other concepts we are already familiar with.

The purpose of any transform is to make our job easier, not just to see if we
can do it. Suppose, for example, you were asked to quickly take the year
1999 and double it. Rather than do direct multiplication you would probably
do a home-made “millennial transform” in your head something like 1999 =
2000 – 1. Then after transforming you would multiply by 2 to obtain 4000 – 2.
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You would then take an “inverse millennial transform” of 4000 – 2 = 3998 for
the correct answer. You would have described the years in terms of millen-
nia (2000 – 1, 4000 – 2). In other words you compared years with millennia.

Another even more common example is when you ask a dieter how the pro-
gram is working out. They will usually tell you their weight loss, but not
their current weight. This in spite of the fact they have been doing daily for-
ward and inverse transforms between the bathroom scale reading and the
“brag value* that they share with the world. Here they would be describing
their progress in terms of weight loss (instead of bulk weight).

A more advanced example is of course the fast Fourier transform or FFT
which allows us to see signals in the “frequency domain”. Fig. 1.3–1 shows us
the constituent sinusoids of different frequencies (spectrum) that make up
the signal. In other words, we are correlating (comparing) the signal with
these various sinusoids and describing the signal in terms of its frequencies).

Jargon Alert: The use of the FFT is now so commonplace that it’s re-
sults are referred to as the “frequency domain” of a signal. (“Time
domain” is simply the original amplitude vs. time plot of a signal.)

Thus we can say that in the FFT we are comparing and describing the signal
in terms of sinusoids of different frequencies or “stretched” sinusoids (to use
wavelet terminology). In the wavelet transforms we will be comparing and
describing the signal in terms of stretched and shifted wavelets.

The FFT also allows us to manipulate the transformed data and then do an
inverse FFT (IFFT) for custom filtering such as eliminating constant fre-
quency noise. For signals with embedded events (the most interesting kind!)
the FFT tells us the frequency of the event but not the time that it occurred.

Fourier

• • • • • • • • • • • •

Constituent sinusoids (different magnitudes and frequencies)Signal

Transform

Figure 1.3–1 The signal can be transformed into a number of sinusoids of various sizes and
frequencies. When added together (inverse), these sinusoids reconstruct the original signal.

                                                
* Apologies to Sir Lawrence Bragg, a Physics and Signal Processing pioneer.
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1.4 Short-Time Transforms, Sheet Music, and
a first look at Wavelet Transforms

A possible solution to providing both time and frequency information about
an embedded event might be to divide the total time interval into several
shorter time intervals and then take the FFT for each interval. This time-
windowing method would narrow down the time to that of the interval
where the event was found. This short-time Fourier transform (STFT)
method has been around since 1946 and is still in wide use today.

While the STFT gives us a compromise of sorts between time and frequency
information, the accuracy is limited by the size and shape of the window. For
example, using many time intervals would give good time resolution but the
very short time of each window would not give us good frequency resolution,
especially for lower frequency signals.

Longer time intervals for each window would allow us better frequency
resolution, but with these fewer, longer windows we would suffer in the
time resolution (i.e. with very few windows we would have very few times to
associate with the event). Longer time intervals are also not needed for high
frequency signals.

Wavelet transforms allow us variable-size windows. We can use long time in-
tervals for more precise low-frequency information and shorter intervals
(giving us more precise time information) for the higher frequencies.

We are actually already familiar with this concept. Ordinary sheet music is
an everyday example of displaying both time and frequency information—
and it happens to be set up very similar to a wavelet transform display.

Besides demonstrating the concept of longer time for lower frequencies and
shorter times for higher frequencies, sheet music even has a logarithmic
vertical frequency scale (each octave is twice the frequency of the octave
below it). Musicians know that low notes take longer to form in a musical in-
strument. (Engineers know it takes a longer time to examine a low fre-
quency signal.) This is why the Piccolo solo from John Philip Sousa’s “Stars &
Stripes Forever” (Fig. 1.4–1) can’t be played on a Tuba.*

                                                
* There are in fact recordings of tuba players that can press the big valves fast enough to play all the notes in the
piccolo solo, but some of the notes themselves do not have enough time to form in the horn and are not heard.
DSP engineers would refer to this as insufficient integration time.
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Figure 1.4–1 Portion of the piccolo solo from John Philip Sousa’s “Stars and Stripes Forever”

Figure 1.4–2 shows octaves of the note “C” on sheet music (left). A wavelet
display is very much like the configuration to the right. If we use a base 2 log
scale so we have increasing frequency in powers of 2 as the y axis we can see
a remarkable comparison between the sheet music and the wavelet display.
(We will see more of this octave or power of 2 behavior a little later in the
discrete wavelet transforms.)

If you think about it, sheet music has another dimension besides discrete
time and frequency. The volume or magnitude of each note is indicated by
discrete indicators such as ff for fortissimo or very loud.* Sheet music even
describes the time increments. For example, Tempo 60 indicates 60 beats per
minute or 1 beat per second.
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Figure 1.4–2 Comparison of 5 octaves of the note “C” on sheet music to a (vertically inverted)
wavelet transform time/frequency diagram. Note the powers of 2 in both time (linear scale) and
frequency (log scale) and that higher frequencies require less time for adequate resolution. Note
how magnitude is indicated by fortissimo (ff) on sheet music. Magnitude on the time/frequency
diagram at right is indicated by the brightness or color. Note that both representations indicate
discrete frequencies, discrete times, and discrete magnitudes.

                                                
* Fortissimo is Italian for very loud, pianissimo or pp indicates very soft. The other intensity notations (f, mf,
mp, p, etc.) indicate discrete levels of loudness. The modern piano or pianoforte got its name from its ability to
play notes either piano (soft) or forte (loud).
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In most (but not all) texts, the wavelet display at the right of Figure 1.4–2 is
drawn inverted (“flipped” vertically). In other words the high frequencies are
on the bottom and the lower frequencies are on top. The y axis on most wav-
elet displays shows increasing scale (stretching of the wavelet) rather than
increasing frequency.

Figure 1.4–3 shows a “sneak preview” of a wavelet transform display (c) and
how it compares to an ordinary time-domain (a) and frequency-domain (b)
display.

Imagine if a musical composer had to “de-compose”* by changing a single
note. If he used a musical form similar to (a) he would have to change all the
notes at a particular time (or “beat”). If he used a form similar to (b) he would
have to change all the notes of a particular frequency (or “pitch”). Using a
form similar to (c), as is sheet music, he can change only one note. This is
how denoising or compression is accomplished using wavelet technology. An
unwanted or unneeded portion of data (a computational “wrong note” if you
will) can be easily identified and then changed or deleted without appreciable
degradation of the signal or image.
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* “Decomposing” is a term actually used in the discrete wavelet transforms we will soon discuss. Beethoven is
even now decomposing. (You knew that was coming, right?)
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1.5 Example of the Fast Fourier Transform
(FFT) with an Embedded Pulse Signal

In this example we start with a point-by-point comparison of a time-domain
pulse signal (A) with a high frequency sinusoid of constant frequency (B) as
shown in Figure 1.5–1. We obtain a single “goodness” value from this com-
parison (a correlation value) which indicates how much of that particular si-
nusoid is found in our original pulse signal.

We can observe that the pulse has 5 cycles in 1/4 of a second. This means
that it has a frequency of 20 cycles in one second or 20 Hz.

Time (seconds)
0 1/4 1/2 3/4 1

Pulse Signal. 5 cycles in 
1/4 second =  20 Hz.  
Centered at 3/8 second.  

Sinusoid stretched to 20 Hz for 
comparison. Good correlation.  
Same frequency as pulse so 
peaks and valleys can align.

Sinusoid stretched to 
10 Cycles/Sec (10 Hz) 
for comparison.  Poor 
correlation again.    

40 Cycle per Second
(40 Hz) Sinusoid
for comparison with pulse 
signal A.  Poor correlation. 

A

B

C

D

Figure 1.5–1 FFT-type comparison of Pulse Signal with several stretched sinusoids. The
pulse (A) has 5 discernible “peaks” (local maxima) and 5 discernible “valleys” (local minima).
These peaks and valleys will line up best with those of sinusoid C. (We discuss shifts in time or
phase shifts to better align the pulse and sinusoid in a later chapter).
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The first comparison sinusoid (B) has twice the frequency of the pulse or 40
Hz. Even in the time interval where the signal is non-zero (the pulse) it
doesn’t seem intuitively like the comparison would be very good. (A small
mathematical correlation value bears this out.)

By lowering the frequency of (B) from 40 to 20 Hz (waveform C) we are ef-
fectively “stretching in time” (scaling) the sinusoid (B) by 2 so it now has only
20 cycles in 1 second. We compare (C) point-by-point again over the 1 second
interval with the pulse (A). This time the correlation of the pulse (A) with the
comparison sinusoid (C) is very good. The peaks and valleys of (C) and of the
pulse portion of (A) align in time (or can be easily phase-shifted to align) and
thus we obtain a large correlation value.

This same diagram (Fig. 1.5–1) shows us one more comparison of the pulse
with (A). This is our original sinusoid (B) stretched by 4 so it has only 10 cy-
cles in the 1 second interval. The correlation is poor once again because the
peaks and valleys of (A) and (D) no longer line up. We could continue
stretching until the sinusoid becomes a straight line having zero frequency
or “DC” (named for the zero frequency of Direct Current) but all these com-
parisons will be increasingly poor.

An actual FFT compares many “stretched” sinusoids (“analysis signals”) to
the original pulse rather than just the 3 shown in Figure 1.5–1. The best cor-
relation is found when the comparison sinusoid frequency exactly matches
that of the pulse signal. Figure 1.5–2 shows the first part of an actual FFT of
our pulse signal (A).

The locations of our sample comparison sinusoids (B, C, and D) are indicated
by the large dots. (The spectrum of our pulse signal is shown by the solid
curve.) Again, the FFT tells us correctly that the pulse has primarily a fre-
quency of 20 Hz, but does not tell us where the pulse is located in time.*

                                                
* The generalized mathematical equation for the DFT (implemented by the FFT algorithm) is a shortcut for
indicating the real cosines and imaginary sines (Xk) that make up the signal (xn). (We showed cosines only in
the above example to simplify and visually portray the process.)

kX = nx cos(2 nk / N)∑ − j nx sin(2 nk / N)∑
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Frequency (Hz)0 2010 30 40 50

BA C

Figure 1.5–2 Actual FFT plot of the above pulse signal with the three comparison sinusoids.

1.6 Examples using the Continuous Wavelet
Transform

Wavelet transforms are exciting because they too are comparisons, but in-
stead of correlating with various stretched, constant frequency sinusoid
waves they use smaller or shorter waveforms (“wave–lets”) that can start
and stop. In other words, the fast Fourier transform relates the signal to si-
nusoids while the wavelet transforms relate signals to wavelets. In the real
world of digital computers, wavelet transforms relate our discrete, finite
(digital) signal to the discrete, finite, wavelet filters.

Fig. 1.6–1 shows us some of the constituent wavelets that have been shifted
and stretched (from the mother wavelet) that make up the signal. In other
words, we are correlating (comparing) the signal with these various shifted,
stretched wavelets. An actual wavelet transform compares many stretched
and shifted wavelets (“analysis wavelets”) to the original pulse rather than
just these few shown in Figure 1.6–1.

Wavelet

Constituent wavelets (different magnitudes, stretching,  shifting)Signal

shifted

stretched only

stretched 

& shifted

stretched 

& shifted

mother

wavelet

Transform

Figure 1.6–1 The signal can be transformed into a number of wavelets of various stretching,
shifting, and magnitude. When added together these wavelets reconstruct the original signal.
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Figure 1.6–2 demonstrates the stretching and shifting process for the con-
tinuous wavelet transform. Instead of sinusoids for our comparisons, we will
use wavelets. Waveform (B) shows a Daubechies 20 (Db20) wavelet about 1/8
second long that starts at the beginning (t = 0) and effectively ends well be-
fore 1/4 second. The zero values are extended to the full 1 second. The point-
by-point comparison* with our pulse signal (A) will be very poor and we will
obtain a very small correlation value.

Time (seconds)
0 1/4 1/2 3/4 1

Roughly 40 Hz Db20 Wavelet 
shifted to line up with pulse. 
Still poor comparison because 
frequencies don’t match.  

Roughly 40 Hz Daubechies 
20 (Db20) Wavelet
for comparison with pulse 
signal D.  Poor correlation. 

Pulse Signal. 5 cycles in 
1/4 second =  20 Hz.  

A

Db20 Wavelet stretched by 
2 to rougly 20 Hz and 
shifted for comparison.  
Good correlation.   

B

C

D

shift

stretch

Figure 1.6–2 CWT-type comparison of pulse signal with several stretched and shifted wav-
elets. If the energy of the wavelet and the signal are both unity, these the comparisons are corre-
lation coefficients. Note: Knowing how much (B) was stretched and shifted to match (A) tells us
the location and approximate frequency of the pulse. Also, a good match with this particular
wavelet tells us that the pulse looks a lot like the wavelet (sinusoidal in this case).

                                                
* The pulse and the wavelets are drawn here as continuous functions. In DSP we would have a finite number of
data points for the signal and we would be comparing these point-by-point with the finite number of values of
the Db20 wavelet filter.



Chapter 1 - Preview of Wavelets, Wavelet Filters, and Wavelet Transforms 15

© 2009 Space & Signals Technologies LLC, All Rights Reserved.  www.ConceptualWavelets.com

In the previous FFT discussion we proceeded directly to stretching. In the
wavelet transforms here we first shift the unstretched basic or mother wav-
elet slightly to the right and perform another comparison of the signal with
this new waveform to get another correlation value. We continue to shift and
when the Db20 wavelet is in the position shown in (C) we get a little better
comparison than with (B), but still very poor because (C) and (A) are differ-
ent frequencies.

Jargon Alert: The unstretched wavelet is often referred to as the
“mother wavelet”. The Db20 wavelet filter we are using here starts
out as 20 points long (hence the name) but can be stretched to many
more points. (A counterpart lowpass filter used in the upcoming
discrete wavelet transform is often called a “father wavelet”. Honest!)*

After we have continued shifting the wavelet all the way to the end of the 1
second time interval, we start over with a slightly stretched wavelet at the
beginning and repeatedly shift to the right to obtain another full set of these
correlation values.

Waveform (D) shows the Db20 wavelet stretched to where the frequency
(pseudo-frequency—ref. Fig. 1.1–1) is roughly the same as the pulse (A) and
shifted to the right until the peaks and valleys line up fairly well. At these
particular amounts of shifting and stretching we should obtain a very good
comparison and a large correlation value. Further shifting to the right, how-
ever, even at this same stretching will yield increasingly poor correlations.
Further stretching doesn’t help at all because even when lined up, the pulse
and the over-stretched wavelet won’t be the same frequency.

In the CWT we have one correlation value for every shift of every stretched
wavelet.† To show the correlation values (quality of the “match”) for all these
stretches and shifts, we use a 3-D display. Figure 1.6–3 shows a Continuous
Wavelet Transform (CWT) display for the pulse signal (A) in our example.

                                                
* Mathematically speaking, we replace the infinitely oscillating sinusoid basis functions in the FFT with a set
of locally oscillating basis functions which are stretched and shifted versions of the fundamental, real-valued
bandpass mother wavelet. When correctly combined with stretched and shifted versions of the fundamental, real-
valued lowpass father wavelet they form an orthonormal basis expansion for signals.
† The generalized equation for the CWT (shown below) is a shortcut that shows that the correlation coefficients
depend on both the stretching and the shifting of the wavelet, ψ, to match the signal (xn here) as we have just
seen. The equation shows that when the “dilated and translated” wavelet matches the signal the summation
will produce a large correlation value.

C(stretching,shifting) = nx (stretching,shifting)∑
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The bright spots indicate where the peaks and valleys of the stretched and
shifted wavelet align best with the peaks and valleys of the embedded pulse
(dark when no alignment, dimmer where only some peaks and valleys line
up, but brightest where all the peaks and valleys align). In this simple exam-
ple, stretching the wavelet by a factor of 2 from 40 to 20 Hz (stretching the
filter from the original 20 points to 40 points) and shifting it 3/8 second in
time gave the best correlation and agrees with what we knew a priori or “up
front” about the pulse (pulse centered at 3/8 second, pulse frequency 20 Hz).

We chose the Db20 wavelet because it looks a little like the pulse signal. If
we didn’t know a priori what the event looked like we could try several
wavelets (easily switched in software) to see which produced a CWT display
with the brightest spots (indicating best correlation). This would tell us some-
thing about the shape of the event.
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Figure 1.6–3: Actual CWT display of the above example indicating the time and frequency of
the Pulse Signal. Shifting or translation of the wavelet (filter) in time is the x or horizontal axis,
stretching or dilation of the wavelet (the inverse of its pseudo frequency) is the y or vertical axis,
and the “goodness” of the correlation of the wavelet (at each x-y point) with the signal (pulse) is
indicated by brightness. The fainter bands indicate where some of the peaks and valleys line up
while the center of the brightest band (in the cross-hairs) shows the best “match” or correlation.

For the simple tutorial example above we could have just visually discerned
the location and frequency of the pulse (A). The next example is a little more
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representative of wavelets in the real world where location and frequency
are not visible to the naked eye. Wavelets can be used to analyze local
events as we will now see.

We construct a 300 point slowly varying sine wave signal and add a tiny
“glitch” or discontinuity (in slope) at time = 180 as shown in Figure 1.6–4 (a).
We would not notice the glitch unless we were looking at the closeup (b).
Using a conventional fast Fourier transform (FFT) on the signal shows its
frequency components (Fig. 1.6–5). The low frequency of the sine wave is
easy to notice, but the small glitch cannot be seen.
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Figure 1.6–4 Very small discontinuity at time = 180 (a) cannot be seen without a closeup (b).

While neither the (full-length) time domain or frequency domain display tell
us much about the glitch, the CWT wavelet display (Fig. 1.6–6) clearly shows
a vertical line at time = 180 and at low scales. (The wavelet has very little
stretching at low scales, indicating that the glitch was very short.) The CWT
also compares well to the large oscillating sine wave which hides the glitch.
At these higher scales the wavelet has been stretched (to a lower frequency)
and thus “finds” the peak and the valley of the sine wave to be at time = 75
and 225 (see Fig. 1.6–4). For this short discontinuity we used a short 4-point
Db4 wavelet (as shown) for best comparison.

Note that if we were to vertically invert this display with the lower frequen-
cies shown on the bottom, we would see many similarities to the sheet music
notation described earlier.

 a. Large sinewave
 with small glitch

 b. Closeup of glitch
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Figure 1.6–5 FFT magnitude plot (a) clearly indicates the presence of a large low-frequency
sinusoid. A closeup of the FFT (b) further defines the sine wave in frequency, but does not help
to find the glitch. Note: Even if the glitch were large enough to show a noticeable frequency com-
ponent in the FFT, this would still not indicate the time of the glitch-event.

Short “high frequency” wavelet 
compares well to discontinuity. 
It “finds” it’s location at 180.   

Stretched “low frequency” 
wavelet compares better to 
long sinusoidal (wave) signal. 
It “finds” peaks and valleys.  
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Figure 1.6–6 CWT display of result of correlation of signal with various scales (stretching) of
the Daubechies 4 (Db4) wavelet. The short mother wavelet (filter) at scale = 2 is only 4 points
long (the “continuous” estimation of the Db4 is drawn). This short filter compares well with the
short glitch at time 180. The stretched wavelet (filter) at scale = 20 (top) is about 50 points long
and compares better to the large 300 point sinusoid of the main signal than to the glitch.*).
                                                
* We show only to scale = 20 here. A CWT display with much larger scale values would show the best correla-
tion with the sinusoid to be at about scale = 150. The Db4 wavelet filter is stretched to 300 points at scale =
150, and best fits the 300 points of the sine-wave signal. However the glitch at time = 180 would not be so
easily discernible on such a large scale display ant thus it is not shown. We can also adequately locate the peak
and valley of the sine wave at 75 and 225 using just this abbreviated-scale CWT plot—compare Fig 1.6–3 (a).
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1.7 A First Glance at the Undecimated Dis-
crete Wavelet Transform (UDWT)

Besides acting as a “microscope” to find hidden events in our data as we have
just seen in the continuous wavelet transform (CWT) display, Discrete wav-
elet transforms (DWTs) can also separate the data into various frequency
components, as does the FFT. We already know that the FFT is used exten-
sively to remove unwanted noise that is prevalent throughout an entire sig-
nal such as a 60 Hz hum.

Unlike  the FFT, however, the discrete wavelet transform allows us to re-
move frequency components at specific times in the data. This allows us a
powerful capability to throw out the “bad” and keep the “good” part of the
data for denoising or compression. Discrete wavelet transforms also incorpo-
rate easily computed inverse transforms (IDWTs) that allow us to reconstruct
the signal after we have identified and removed noise or superfluous data.

A fair question before proceeding is “What is continuous about the continu-
ous wavelet transform in our world of digital computers that works with dis-
crete data? Aren’t all these transforms “discrete”? What then differentiates
these discrete wavelet transforms from the so-called continuous ones?”

The answer is that although all wavelet transforms in DSP are technically
discrete*, the so-called continuous wavelet transform (CWT) differs in how it
stretches and shifts. The term “continuous” in a CWT indicates all possible in-
teger factors of shifting and stretching (e.g. by 2, 3, 4, 5, etc.) rather than a
mathematically continuous function. By contrast, we will see that discrete
wavelet transforms stretch and shift by powers of 2. Another difference is
that the continuous wavelet transform uses only the one wavelet filter while
the discrete wavelet transform uses 3 additional filters as we will soon dis-
cover. We will now look at the 2 best known and most utilized of the DWTs—
the conventional discrete wavelet transform (DWT) and the undecimated
discrete wavelet transform (UDWT).

Jargon Alert: Stretching or shifting by powers of 2 is often referred
to as “dyadic”. For example, dyadic dilation means stretching (or
shrinking) by factors of 2 (e.g. 2, 4, 8, 16 etc).

                                                
* As is the discrete Fourier transform  (implemented by the FFT algorithm).
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The undecimated discrete wavelet transform (we’ll explain why it’s called
“undecimated” in a moment) is not as well known as the conventional dis-
crete wavelet transform. However it is simpler to understand than the con-
ventional DWT, compares better with the continuous wavelet transform we
have just studied and is similar enough to the DWT to provide a clear learn-
ing “bridge”. UDWTs also don’t have the “aliasing” problems we will soon en-
counter and discuss in the conventional DWT.

Figure 1.7–1, (a) shows the simplest UDWT. The first thing you will notice on
this signal flow diagram is that it has 4 filters. This is called a filter bank for
this reason. (We will run into this type of figure a lot during the book, but it’s
not necessary to completely understand it at this point in the preview.) These
4 filters are closely related (complimentary) as we will see later.

The left half of the UDWT is called the decomposition or analysis portion
and comprises the forward transform. The right half is called the reconstruc-
tion or synthesis portion and comprises the inverse transform.* The vertical
bar separating the 2 halves represents the area where we can add more
complexity (and capability), but we proceed by ignoring the bar for now.

S  S’

D1

A1

Highpass Halfband Filter

Lowpass Halfband Filter

b.H

S

L L’

H’

 S’

D1

A1

cD1

cA1

a.

Figure 1.7–1 Single-level undecimated discrete wavelet transform (UDWT) filter bank shown
at left (a). The forward transform or analysis part is the half to the left of the vertical bar and is
usually referred to as the decomposition portion. The inverse transform or synthesis part is the
half to the right of the vertical bar and is called the reconstruction portion. The bar itself is
where additional levels of decomposition and reconstruction can be inserted, producing higher
level UDWTs. If the data is left unchanged (no activity in the vertical bar) the functional equiva-
lent of this single-level UDWT is shown in the right diagram (b).

                                                
* The terms UDWT and IUDWT are occasionally used as labels for the forward and inverse transforms. Usu-
ally, however, the term UDWT refers to both halves. The discrete Fourier transform (DFT) and the function-
ally-equivalent fast Fourier transform (FFT) also use the terms analysis and synthesis to describe their left and
right (forward and inverse) halves (FFT and IFFT).
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Jargon Alert: “Decomposition” in wavelet terminology means split-
ting the signal into 2 parts using a highpass and a lowpass filter.
Each of the 2 parts themselves can be decomposed further (split into
more parts) using more filters. “Reconstruction” means using filters
to combine the parts. “Perfect reconstruction” means that that the
signal at the end is the same as the original signal (except for a pos-
sible delay and a constant of multiplication).

On the upper path of Fig. 1.7–1, (a) the signal, S, is first filtered by H
(highpass decomposition filter) to produce the coefficients cD1. At this point
we can do further decomposition (analysis) for compression or denoising, but
for now we will proceed directly to reconstruct (synthesize) the signal. cD1 is
next filtered by H’ (highpass reconstruction filter) to produce the Details
(D1). The same signal is also filtered on the lower path by the lowpass de-
composition filter L to produce the coefficients cA1 and then by the lowpass
reconstruction filter L’ to produce the Approximation (A1).

Jargon Alert: “Approximation” in Wavelets is the smoothed signal af-
ter all the lowpass filtering. “Details” are the residual noise after all
the highpass filtering. cA1 designates the Approximation Coefficients
and cD1 designates the Details Coefficients. These coefficients can be
broken down (decomposed) into further coefficients in higher level
systems (depicted by the vertical bar in the center of the diagrams).

H and H’ together produce a highpass halfband filter while L and L’ produce
a lowpass halfband filter as seen in Fig. 1.7–1, (b). These 4 wavelet filters are
non-ideal filters and there is some overlap as depicted below in the frequency
allocation diagram (Figure 1.7–2).

Jargon Alert: “Halfband filters” split the frequency into a lowpass
and a highpass “half” (A1 and D1 here), usually with some overlap.
We refer to all 4 filters as wavelet filters, but some texts refer to the 2
lowpass filters as scaling function filters and the 2 highpass as wav-
elet filters. Some call only H’ the wavelet filter. Again, Caveat Emptor.

Fig. 1.7–1 showed a single-level UDWT. Fig. 1.7–3 shows a 2-level UDWT.
(Note the additional decomposition and reconstruction as cA1 is split into
cD2 and cA2.) Multi-level UDWTs allow us to stretch the filters, similar to
what we did in the CWT, except that it is done dyadically (i.e. by factors of 2).
The stretching is done by upsampling by 2 (e.g. “Hup”) and then filtering (a
common method of interpolation in DSP). With this further decomposing and
reconstruction we can split the signal into more frequency bands (Fig. 1.7–4).
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Figure 1.7–2 Frequency allocation after a single-level UDWT*. The diagram is illustrative
only and the actual shape depends on the wavelet filters. Note overlap from non-ideal filtering.
When the Details and Approximations are added together they reconstruct S’ (D1 + A1 = S’)
which is identical to the original signal, S, except for a delay and usually a constant of multipli-
cation. For a very simple denoising, we could just discard these high frequencies in D1 (for
whatever time period in the signal we choose) and A1 by itself would be a rudimentary
“denoised” signal.
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Figure 1.7–3 A 2-level UDWT. The signal, S, is split into cD1 and cA1. We then split cA1
into cD2 and cA2. The final signal, S’, is now reconstructed by combining A1 and D1. Since A1
is obtained by combining D2 and A2, S’ = A1 + D1 = A2 + D2 + D1. We could do some denois-
ing or compression at this point. If there was nothing of interest in D2, for example, we could
zero it out and would have S’ = A2 + 0 + D1 = A2 + D1. Notice that if we set the coefficients
cD2 to zero that this would also cause D2 to be zero (filtering of zeros still produces zeros). We
will discuss multi-level UDWTs in detail later.
                                                
* The Nyquist or “folding” frequency is the highest possible frequency without aliasing (discussed shortly).
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Figure 1.7–4 Frequency allocation after a 2-level UDWT. Note that the A1 is now split into 2
sub-bands. This allows us better flexibility in denoising or compression.

Jargon Alert: “Upsampling by 2” means placing zeros between the ex-
isting data points. For example, A time-sequence of the numbers
[6,  5,  4,  3] would become with upsampling by 2

[6, 0, 5, 0, 4, 0, 3].

or in some cases

[0, 6, 0, 5, 0, 4, 0, 3, 0]

with a leading and/or a trailing zero (more on interpolation later).

The UDWT (sometimes referred to as the redundant DWT or RDWT) with
it’s method of inserting zeros as part of the stretching of the filters is thus
also called the “A’ Trous” method which is French for “with holes” (zeros).

A 4-level UDWT with more stretched filters splits the signal into 5 frequency
sub-bands (Figure 1.7–5).
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Figure 1.7–5 Frequency allocation in a 4-level UDWT. Note that S is split into A1 and D1,
A1 is split into A2 and D2, A2 is split into A3 and D3, and finally A3 is split into A4 and D4.
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The 4-level UDWT signal flow diagram is not shown in this preview because
of its size and complexity, but it functions very similar to the 2-level UDWT
except that the filters are stretched not only by 2, but also by 4 and 8 to give
us these additional sub-bands. Don’t worry if you don’t understand these
multi-level systems in this preview. We’ll talk more about them later. They
are presented here mainly to show you what they look like and how they
have stretched filters similar to the CWT. Hang in there.

1.8 A First Glance at the conventional Discrete
Wavelet Transform (DWT)

We stretched the wavelet continuously (by integer steps) in the CWT and
dyadically (by factors of 2) in the UDWT. In the conventional DWT we shrink
the signal instead (dyadically) and compare it to the unchanged wavelet fil-
ters. We do this through “downsampling by 2”.

Jargon Alert: “Downsampling by 2” means discarding every other
signal sample. For example a sequence of numbers (signal) [5   4   3  
2] becomes [5    3] (or [4   2] depending on where you start). This is
also referred to in wavelet terminology as “decimation by 2” (in spite
of the dictionary definition for the prefix “Deci”).

A single-level conventional DWT is shown in Figure 1.8–1 with the decompo-
sition or analysis portion on the left and the reconstruction or synthesis por-
tion on the right half*. Downsampling and upsampling by 2 is indicated by the
arrows in the circles. For example, if we downsampled then immediately up-
sampled [5  4  3  2] we would first have [5  3] and then [5  0  3  0].

Further decomposition and reconstruction (a higher level DWT) is done in
the vertical bar separating the 2 halves. The single-level DWT shown here is
the same as the single level UDWT except that in discarding every other
point, we have to deal with aliasing. We must also be concerned with shift
invariance (do we throw away the odd or the even values?—it matters!).†

                                                
* As with the UDWT, the term DWT usually refers to both the left half or forward  DWT and the right half or
inverse DWT (occasionally called the IDWT).
† The UDWT has neither of these problems. We will discuss aliasing and shift invariance more in later chap-
ters.
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Figure 1.8–1 Single-level conventional DWT. Similar to the single-level UDWT with the same
filters (H, H’, L, and L’) but with upsampling and downsampling. With no activity in the verti-
cal bar, the coefficients cD1 and cA1 will be unchanged between the end of decomposition and
the start of reconstruction. Notice that with downsampling the coefficients cD1 and cA1 are
about half the size as those in the Undecimated DWT (UDWT).

Jargon Alert: “Aliasing” means 2 or more signals have the same
sample values. One pathological example of aliasing caused by
downsampling by 2 would be a high frequency oscillating time sig-
nal:

[1 -1  1 -1  1 -1  1 -1  1 -1  1 ...

If we downsample by 2 we have left over

[1     1     1     1     1     1 ...

which is a DC (zero frequency) signal. This is obviously not the high
frequency signal we started with but an “alias” instead.

With the potential for aliasing problems because of downsampling we would
not expect to be able to perfectly reconstruct the signal as we did in the
UDWT. One of the remarkable qualities of DWTs is that with the right wav-
elet filters (H, H’, L and L’) we can perfectly reconstruct, even with aliasing!
The stringent requirements on the wavelet filters to be able to cancel out ali-
asing is part of why they often look so strange (as we saw in Figure 1.2–3).
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Jargon Alert: Filters in these filter banks that are able to cancel out
the effects of aliasing (if used correctly) are called “Perfect Recon-
struction Quadrature Mirror Filters” or PRQMFs“.

As with the UDWT, we can denoise our signal by discarding portions of the
frequency spectrum—as long as we are careful not to discard vital parts of
the alias cancellation capability. Correct and careful downsampling also aids
with compression of the signal. With downsampling, cD1 and cA1 are only
about half the size as in the UDWT. So compared to the conventional DWT,
the UDWT is “redundant”. This is why it’s often called a redundant DWT.

Multi-level conventional DWTs produce the same frequency sub-bands as the
multi-level UDWTs we saw earlier (if the aliasing is correctly dealt with).
Figure 1.8–2 shows a 2-level conventional DWT. The frequency allocation is
the same as the 2-level UDWT (see Fig. 1.7–2). Notice that we use the same
4 wavelet filters (H, H’, L, and L’) repeatedly in a conventional DWT.

It’s usually the high-frequencies that comprise the noise in a signal, thus we
decompose the lower frequencies in these multi-level transforms. Figure
1.8–2 shows cA1 split into cA2 and cD2 but cD1 is not split further. We can,
of course split these Details further if we want to. This is done using a wav-
elet packet transform and we will look at these in later chapters.
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Figure 1.8–2 2-level conventional DWT. Instead of stretching the filters as in the UDWT (and
CWT), we “shrink” the signal through downsampling and use the same 4 filters (H, H’, L, and
L’) throughout. Note that with downsampling cD2 and cA2 are about 1/4 the size as those in
the UDWT.
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1.9 Examples of use of the conventional DWT

As mentioned, an important advantage of a wavelet transform is that, unlike
an FFT, we can threshold the wavelet coefficients for only part of the time.

Jargon Alert: To “threshold” (used as a verb here) means to disallow
all numbers that are either greater or less (depending on the appli-
cation) than a specified value or threshold (used now as a noun).

We will use a seven-level DWT for this next example. Instead of simply A1
and D1 as we saw in Figure 1.8–1, we would have further decomposition of
A1 into A2 and D2, then A2 into A3 and D3, and so on until A6 is decomposed
into A7 and D7. The frequency allocation for a conventional DWT (assuming
no aliasing problems) is the same as that for the UDWT. For example, see
figure 1.7–5 for the allocation by a 4-level DWT (or 4-level UDWT).

Suppose we had a binary signal that had a great deal of noise added which
changed frequency as time progressed (e. g. “chirp” noise). Using a 7-level
DWT the noise would appear at different times in the different frequency
sub-bands (D1, D2, D3, D4, D5, D6, D7 and A7). We could automatically
threshold out the noise at the appropriate times in the frequency sub-bands
and keep the “good” signal data.

A portion of the original noiseless binary signal is shown in Figure 1.9–1. The
values alternate between plus and minus one (a Polar Non-Return to Zero or
PNRZ signal). We next bury the signal in chirp noise that is 10,000 times as
great (80 dB). Looking at the signal buried in noise (Figure 1.9–2) we see
only the huge noise in the time domain (a). Using an FFT on the noisy signal
we see only the frequencies of the noise (b).

However, using a conventional DWT with a time-dependant automatic
threshold for the various frequency sub-bands, we are able to reconstruct
the binary signal (see Fig. 1.9–3) from the “scraps” left over after the chirp
segments were thresholded out at the appropriate times. (More details on
how this was done will be given later).

+ 1

- 1
Figure 1.9–1 Portion of original binary signal. Values alternate between plus and minus one.
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Figure 1.9–2 Signal buried in 10,000 times chirp noise is undetectable in either the ampli-
tude vs. time plot (a) or the magnitude vs. frequency (FFT) plot (b).
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Figure 1.9–3 Successful use of discrete wavelet transform. Portion of denoised signal using
time-specific thresholding with a 7-level conventional DWT is shown at bottom. Original binary
signal. is redrawn at top for comparison. The final result is not a perfect reconstruction of the
original, but close enough to discern the binary values.

Modern JPEG compression also uses wavelets. Figure 1.9–4 shows JPEG
image compression. The image on the right was compressed by a ratio of 91:1
using a conventional DWT with a Biorthogonal 9/7* set of wavelets.

                                                
* As will be explained further in later chapters, the Biorthogonal 7/9 filters have 7 points in H and L’ and 9
points in H’ and L. This particular set of wavelet filters is referred to in MATLAB as “Bior4.4”
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Biorthogonal 
Wavelet Pair

Figure 1.9–4  JPEG image compression of 91:1 achieved with a conventional DWT using a
Biorthogonal 9/7 set of symmetrical wavelets.

1.10 Summary

In this preview chapter we introduced wavelets by drawing them as continu-
ous functions, but told how they are actually implemented in a digital com-
puter as discrete, short wavelet filters. We showed how some filters come
from a mathematical expression for a continuous wavelet (crude wavelets)
while other wavelets start out as filters with just a few points and then are
built into a suitable estimation of a continuous wavelet. We then looked at
various types of wavelets and their uses.

We next looked at transforms we use everyday and the (hopefully) familiar
FFT and showed how they can be thought of as comparisons (correlations).
We saw that the FFT has the shortcoming of not being able to determine the
time of an embedded event. We discussed short-time Fourier transforms and
then introduced the concept of wavelet transforms by comparing them to or-
dinary sheet music. We compared the fast Fourier transform (FFT) to the
continuous wavelet transform (CWT) using an embedded pulse signal as an
example. We next showcased the ability of a CWT to identify the time of oc-
currence of an embedded glitch, it’s frequency, and it’s general shape.

We moved on to the undecimated discrete wavelet transform (UDWT) and
showed how it is similar in many ways to the CWT but uses all 4 wavelet fil-
ters rather than just one. We also noted that the stretching is done only by
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factors of 2 (dyadically) in the UDWT rather than by every possible integer
value as in the so-called “continuous” wavelet transform.

We continued building our understanding from FFT to CWT to UDWT by
next moving on to the conventional DWT. The DWT is similar to the UDWT
but introduces downsampling and thus potential aliasing problems. We men-
tioned special filters that (if used correctly) can cancel out the effects of ali-
asing! We showed two examples of uses of the DWT in signal denoising in a
severe environment and in image compression (JPEG). In the next few short
chapters we will do a step-by-step walk through of these various transforms.

We stress again that this preview is intended to give the reader a feel for how wavelets
and wavelet transforms work. The next 12 chapters and the appendices will provide
much more information and facilitate a real-world understanding and applications of
these amazing tools.

Another option for understanding wavelets is to attend one of the open seminars by
Mr. Fugal. The comments from attendees have been very favorable and are one reason
why a book and website were developed. In fact, all the chapters in the book (including
this one) are written using the completed seminar slides as the basis. Contact D. Lee
Fugal at (toll-free) 877-845-6459 for information on the next open seminar. Private
seminars are also available for your company or organization.

Be sure to visit our website at www.conceptualwavelets.com for more information,
downloads, updates, color slides, additional case studies, corrections, and FAQs.

You can also selectively solidify your understanding by using the consulting services
of Mr. Fugal to clarify or expand on specific sections. You are also welcome to contact
him for comments and suggestions, a short specific question, or for general advice. He
can be reached during business hours at the above number or at l.fugal@ieee.org.

There is much more to discover than can be presented in this short preview. The time
spent, however, in learning, understanding and correctly using wavelets for these
“non-stationary” signals with anomalies at specific times or changing frequencies (the
fascinating, real-world kind!) will be repaid handsomely.


